

## The Renal Cortical $\text{Na}^+/\text{HCO}_3^-$ Cotransporter VI: The Effect of Chemical Modification in Cotransporter Activity

A.A. Bernardo, F.T. Kear, J.A.L. Arruda

Section of Nephrology, University of Illinois at Chicago, and West Side VA Medical Center, Chicago, IL 60612-7315, USA

Received: 8 October 1996/Revised: 23 January 1997

**Abstract.** The  $\text{Na}^+/\text{HCO}_3^-$  cotransporter is the main system that mediates bicarbonate removal out of the proximal tubule cell into the blood. We have previously partially purified this protein and showed that chemical modification of the  $\alpha$ -amino groups by fluorescein isothiocyanate (FITC) inhibited the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The inhibition was prevented by the presence of Na and bicarbonate suggesting that this compound binds at or near the substrate transport sites of the cotransporter. We examined the effect of agents that modify the sulfhydryl group (dithiothreitol), carboxyl groups (*n*-*n*'dicyclohexyl carbodiimide) and tyrosine residues (*p*-nitrobenzene sulfonyl fluoride, *n*-acetyl imidazole and tetranitromethane) on the activity of the cotransporter to gain insight into the chemical residues which may be important for transport function. The sulfhydryl residues modifier, carboxyl group modifier, and tyrosine modifier significantly inhibited bicarbonate dependent  $^{22}\text{Na}$  uptake in basolateral membranes by 50–70% without altering the  $^{22}\text{Na}$  uptake in the presence of gluconate indicating that these agents directly affected the cotransporter without affecting diffusive sodium uptake. The effect of the tyrosine modifier *n*-acetylimidazole was not prevented by the presence of Na and bicarbonate suggesting that the tyrosine residues are not at the substrate binding sites. To determine the presence and role of glycosylation on the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein, we examined the effects of different glycosidases (endoglycosidase F and H, *N*-glycosidase F, O-glycanase) on the cotransporter activity. All glycosidases caused a significant 50–80% inhibition of cotransporter activity. These data demonstrate that *N*-glycosylation as well as O-glycosylation are important for the function of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein.

Taken together, these results suggest that chemical modifiers of tyrosine, carboxyl and sulfhydryl groups as well as glycosylation are important for expression of full functional activity of the cotransporter.

**Key words:** Protein modification — Carboxyl groups — Sulfhydryl groups — Tyrosine modification — Glycosylation

### Introduction

The  $\text{Na}^+/\text{HCO}_3^-$  cotransporter has been recognized as the main mechanism responsible for the transport of bicarbonate from the proximal tubule cells into the blood [1, 3]. The cotransporter plays an important role in the regulation of intracellular pH as evidenced by alterations in its activity under physiologic and pathophysiologic conditions [2, 22]. The cotransporter activity is enhanced by acidosis and decreased in alkalosis. In addition, cyclic AMP and calmodulin inhibit while protein kinase C stimulates the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter [5, 23]. We have partially purified the renal cortical basolateral  $\text{Na}^+/\text{HCO}_3^-$  cotransporter with approximately 300-fold purification of the cotransporter protein [4]. In addition, we have shown that chemical modification of the alpha amino groups by fluorescein isothiocyanate (FITC) inhibited the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter [24]. The inhibition was prevented by the presence of Na<sup>+</sup> and bicarbonate suggesting that this compound binds at or near the substrate transport sites of the cotransporter.

Despite the important role of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter in acid base physiology very limited data are available about the physicochemical properties and structure of the cotransporter. Different group-specific chemical modifying agents have been used successfully and extensively to identify the important structures and amino acid residues of membrane transport proteins for

full functional expression of their activity (6–10, 12–21, 25–27). We studied the effects of chemical agents like dithiothreitol which act on the sulfhydryl groups, and modifiers like *p*-nitrobenzene sulfonyl fluoride, *n*-acetyl imidazole, and tetranitromethane which act on tyrosine residues. We also investigated the role of carboxyl group modifier, *n*-*n*' dicyclohexyl carbodiimide, on the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity. Furthermore, it is known that carbohydrate residues have been found to be important for secretion and targeting of proteins as well as in the expression of full functional activity of membrane proteins. Thus, we employed several glycosidases (endoglycosidase F and H, N-glycosidase F, O-glycanase) to study the roles of glycosylation on the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein. The aim of the present studies was to elucidate the role of the sulfhydryl and tyrosine residues, carboxyl groups and carbohydrate moieties on the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter.

## Materials and Methods

### MATERIALS

Endoglycosidases F and H and *N*-glycosidase were purchased from Boehringer Mannheim (Indianapolis, IN). O-glycanase was bought from Genzyme (Cambridge, MA). Dithiothreitol, *p*-nitrobenzene sulfonyl fluoride, *n*-acetyl imidazole, tetranitromethane, and *n*-*n*'-dicyclohexyl carbodiimide were obtained from Sigma (St. Louis, MO).  $^{22}\text{Na}$  was purchased from Amersham (Arlington Heights, IL). Sephadex LH-20 was bought from Pharmacia (Piscataway, NJ). General laboratory chemicals were of analytical grade and were acquired from Sigma or Fisher.

### BASOLATERAL MEMBRANE PREPARATIONS

Renal cortical basolateral membrane vesicles were prepared from New Zealand white rabbits by means of differential and gradient centrifugation with ionic precipitation as described previously [22]. The procedure results in highly purified basolateral membrane enriched on the average of 12- to 14-fold in Na-K-ATPase activity compared with homogenates and with less than 5% contamination with brush border membranes.

### MODIFICATION OF SULFHYDRYL GROUPS WITH DITHIOTHREITOL

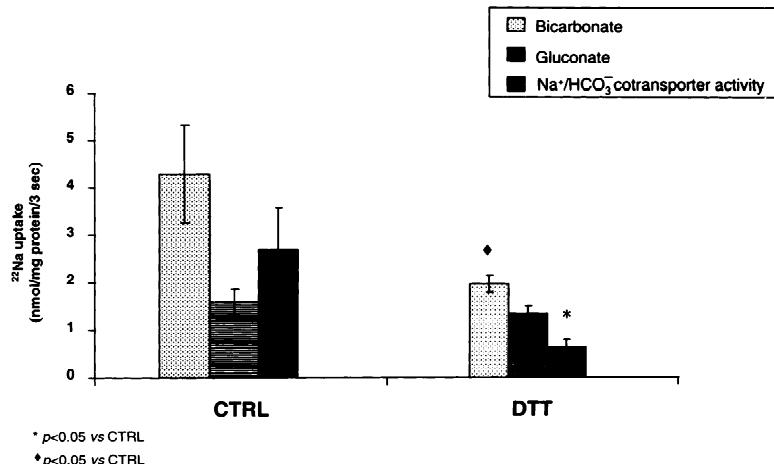
Freshly prepared basolateral membrane vesicles (2.5 mg/ml) were incubated with dithiothreitol (DTT) at 5 mM final concentration of DTT for 30 min. The incubation was carried out at 37°C with gentle constant shaking. The control experiments were performed under the same conditions in the presence of vehicle alone. After incubation, the vesicles were diluted with buffer A containing 250 mM mannitol, 50 mM HEPES, pH 7.5 and centrifuged in Beckman Ti 50 for 20 min at 30,000  $\times g$ . The pellet was resuspended in appropriate buffers

for measurement of  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity as described below.

### MODIFICATION OF CARBOXYL GROUPS WITH DCCD

Freshly prepared basolateral membrane vesicles (2.5 mg/ml) were incubated with *n*-*n*'-dicyclohexyl carbodiimide (DCCD) at final concentration of 0.5 mM DCCD for 30 min at 20°C. The treatment of BLMV with DCCD was carried out as described previously with minor modifications (14). Briefly 2.5 ml unit volume of Sephadex LH-20 was pre-equilibrated with buffer A. It was centrifuged thereafter at 1,000  $\times g$  for 3 min to remove excess buffer. The reaction mixture above was applied to the column then centrifuged at 50  $\times g$  for 10 min and thereafter at 2,000  $\times g$ . The above modified protocol was adequate to stop the reaction based on our preliminary experiments since 0.5 mM addition of DCCD resulted in vesicles with 95% intact transport activity in contrast to control vesicles without DCCD pretreatment. There was no significant protein loss during the process. Protein recovery amounted consistently to about 90%. The eluted vesicles were resuspended in buffer containing 250 mM mannitol and 50 mM HEPES pH 7.5 and washed twice by centrifugation.  $\text{HCO}_3^-$  dependent  $^{22}\text{Na}$  uptake was measured as described below.

### MODIFICATION OF TYROSINE RESIDUES


Freshly prepared purified basolateral membranes vesicles (2.5 mg/ml) were incubated with either tetranitromethane, TNM (to final concentration of 5 mM TNM) or *p*-nitrobenzene sulfonyl fluoride, NBSF (at final concentration of 250  $\mu\text{M}$  NBSF) for 30 min at 22°C. Likewise, fresh basolateral membrane vesicles (2.5 mg/ml) were treated with *n*-acetyl imidazole, NAI (to final concentration of 75 mM NAI), in the presence (substrate protection) or in the absence of 100 mM  $\text{NaHCO}_3$ . The incubation was done for 60 min at 22°C. Following incubation with each respective reagent, the reaction was stopped by addition of ice-cold buffer containing 250 mM mannitol, 50 mM HEPES pH 7.5. The mixtures were centrifuged at 3,000  $\times g$  for 30 min. The pellets were resuspended in appropriate buffer for measurement of the  $\text{HCO}_3^-$  dependent  $^{22}\text{Na}$  uptake.

### TREATMENT OF BASOLATERAL MEMBRANES VESICLES WITH GLYCOSIDASES

Freshly prepared purified basolateral membrane vesicles (2.5 mg/ml) were incubated with the following glycosidases in the presence of protease inhibitors as described earlier [13]. Individual samples were treated with either one of the following: endoglycosidase H, endo-H (2 units/ml final concentration), endoglycosidase F, endo-F (at final concentration of 2 units/ml); *N*-glycosidase F, PNF gase F (at final concentration of 2 units/ml); and O-glycanase, O-gly (at final concentration of 4 units/ml). All incubations were done at 4°C for 18 hours. The reaction was stopped by addition of ice-cold buffer containing 250 mM mannitol and 50 mM HEPES pH 7.5. The reaction mixture was centrifuged at 10,000  $\times g$  for 10 min and the pellet was obtained for measurement of the  $\text{HCO}_3^-$  dependent  $^{22}\text{Na}$  uptake.

### MEASUREMENT OF $\text{Na}^+/\text{HCO}_3^-$ COTRANSPORTER ACTIVITY

$\text{HCO}_3^-$  dependent  $^{22}\text{Na}$  uptake (a measurement of  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity) was measured at 3 sec by the rapid filtration method as



**Fig. 1.** Purified renal cortical basolateral membranes (2.5 mg/ml) were incubated with dithiothreitol (DTT), right panel, at 5 mM final concentration of DTT for 30 min at 37°C. The control (CTRL) experiments, left panel, were performed under the same conditions in the presence of vehicle alone.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.

previously described [4, 22]. Briefly, basolateral membrane vesicles were preincubated for 1 hr at room temperature in a solution containing 200 mM sucrose, 50 mM HEPES, pH 7.5 with Tris and 1 mM mg gluconate. The suspension was centrifuged at 30,000 revolutions per minute with a Beckman Ti 50 rotor for 30 minutes at 4°C. The resulting pellet was resuspended in the same solution. The assay was started by addition of processed proteins to uptake medium containing (in mM) 40 Na gluconate, 60 K gluconate, 1 mg gluconate, and 50 HEPES, pH 7.50 with KOH as well as 1  $\mu\text{Ci}$   $^{22}\text{NaCl}$  in the presence of 25 mM  $\text{HCO}_3^-$  or gluconate. After 3-sec incubation at room temperature the reaction was stopped by adding 4 ml ice-cold stop solution containing 200 mM sucrose and 50 mM HEPES, pH 7.50 with Tris, and subsequently poured on a 0.45- $\mu\text{m}$  pore size pretreated Millipore filter. Filters were washed three times more, and radioactivity was measured by scintillation spectroscopy.

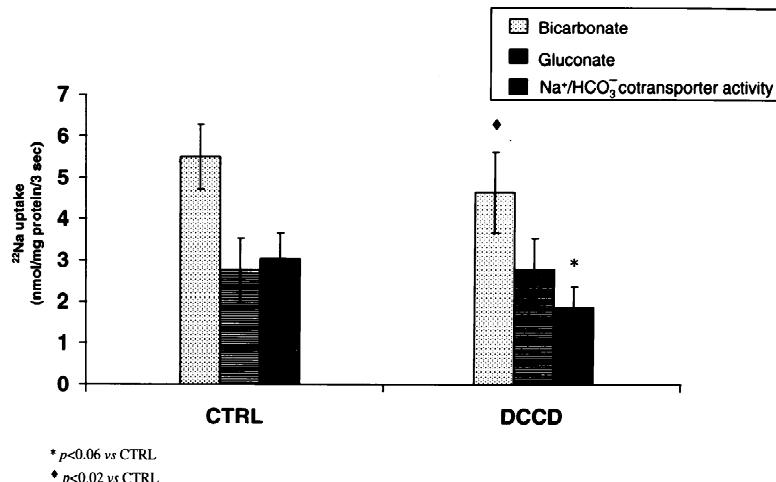
## DATA ANALYSIS

Results are presented as mean  $\pm$  SEM. The *t* test for paired data was used to analyze the results. In the figures the results are represented as  $^{22}\text{Na}$  uptake in the presence of  $\text{HCO}_3^-$  and gluconate.  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity ( $\text{HCO}_3^-$  dependent  $^{22}\text{Na}$  uptake) was taken as the difference in  $^{22}\text{Na}$  uptake in the presence or in the absence of an inwardly directed  $\text{HCO}_3^-$  gradient ( $\text{HCO}_3^-$  was replaced by gluconate).  $^{22}\text{Na}$  uptake in the presence of gluconate was taken as diffusive Na uptake and was used to assess nonspecific effect of these agents on membrane vesicle integrity.

## Results

### MODIFICATION OF THE SULFHYDRYL GROUPS WITH DITHIOTHREITOL

To study the effect of dithiothreitol (DTT), a sulfhydryl group modifier, freshly prepared highly purified basolateral membrane vesicles were incubated with DTT for 30 min. After termination of the reaction and adequate washing, the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter was measured as the difference in  $^{22}\text{Na}$  uptake in the presence of bicarbonate and gluconate. Figure 1 shows


that basolateral membrane vesicles pretreated with DTT significantly inhibited the  $^{22}\text{Na}$  uptake in the presence of  $\text{HCO}_3^-$  as compared to controls, but did not affect the diffusive  $^{22}\text{Na}$  uptake in the presence of gluconate. The  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity (nanomoles/mg protein/3 sec) decreased from  $2.70 \pm .87$  control, to  $0.63 \pm 0.15$ , DTT ( $P < 0.02$ ).

### MODIFICATION OF THE CARBOXYL GROUPS WITH DCCD

To examine the role of the carboxyl groups on the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter, highly purified basolateral membrane vesicles were treated with .5 mM *n-n'*dicyclohexyl carbodiimide (DCCD). Previous investigators have described that termination of the reaction with Sephadex LH-20 need to be monitored for its adequacy and the effects on protein recovery [14]. Preliminary experiments showed that the reaction was adequately terminated by filtration with Sephadex and the protein recovery was excellent. Figure 2 shows that DCCD pretreatment significantly inhibited the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity as compared to untreated controls (control,  $3.02 \pm 0.62$  vs. DCCD,  $1.86 \pm 0.50$ ,  $P < .03$ ). Incubation of the basolateral membranes with DCCD inhibited the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity in the presence of bicarbonate but not in the presence of gluconate indicating that the effect of the carboxyl modifier DCCD is specific.

### EFFECT OF TYROSINE RESIDUES MODIFIERS ON THE $\text{Na}^+/\text{HCO}_3^-$ COTRANSPORTER

Different chemical agents known to modify tyrosine residues in a protein have been utilized in different experiments. TNM (tetrinitromethane) at final concentration of 5 mM was used to treat freshly prepared highly purified basolateral membrane vesicles. TNM had no effect

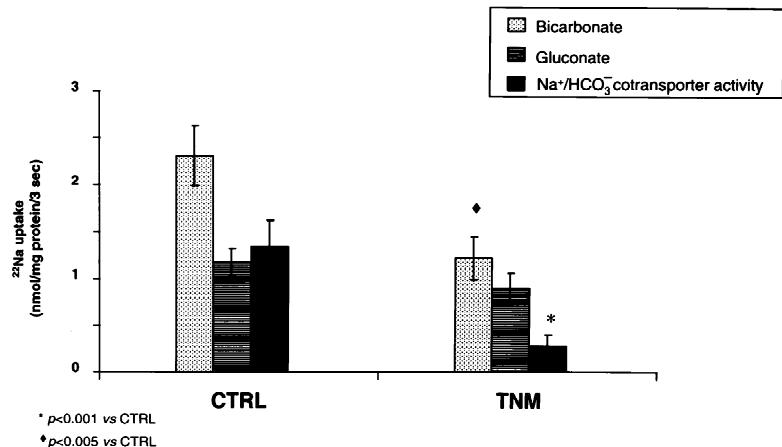


on the  $^{22}\text{Na}$  uptake in the presence of gluconate in the experimental as well as the control group indicating that the agent has no effect on diffusive  $^{22}\text{Na}$  uptake. As shown in Fig. 3, the addition of TNM caused a significant decrease in the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter as compared to controls (control  $1.31 \pm 0.23$  vs. TNM  $0.28 \pm 0.10$ ,  $P < .001$ ). NBSF (*p*-nitrobenzene sulfonyl fluoride) a different tyrosine residues modifier agent was also used. Incubation of the basolateral membrane vesicles with NBSF (Fig. 4) resulted in significant inhibition of the cotransporter activity, control,  $1.33 \pm 0.38$  vs. NBSF treatment,  $0.43 \pm 0.12$  ( $P < .01$ ).

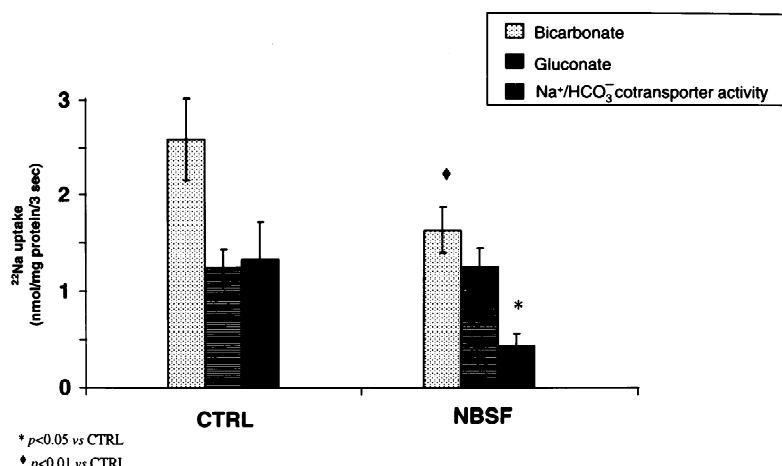
To understand the mechanism whereby tyrosine group modifiers may affect the activity of the cotransporter, NAI (*n*-acetyl imidazole) treatment of basolateral membrane vesicles were undertaken in the presence (substrate protection) or absence of  $\text{NaHCO}_3$ . Figure 5 shows that NAI treatment in the absence of  $\text{NaHCO}_3$  inhibited the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter, control  $1.25 \pm 0.30$  vs. NAI treatment,  $0.66 \pm 0.20$  ( $P < .01$ ). In the presence of substrate protection during treatment with NAI (Fig. 6), the tyrosine modifying agent also inhibited the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter ( $1.33 \pm 0.31$  vs.  $0.67 \pm 0.27$ ,  $P < .01$ ).

#### EFFECT OF GLYCOSYLATION ON THE $\text{Na}^+/\text{HCO}_3^-$ COTRANSPORTER

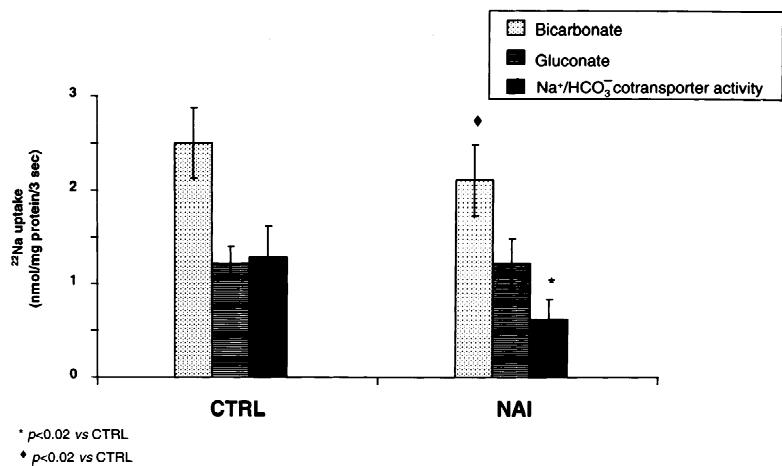
To determine the role of different carbohydrate residues on the activity of the cotransporter protein, several glycosidases were utilized. Purified basolateral membrane vesicles were incubated with either the agents that act on the *N*-oligosaccharide groups (endo-F, endo-H, PNF gase F) or on the O-linked oligosaccharide groups (O-glycanase). As shown on Fig. 7, treatment of the basolateral membrane vesicles with endo-F (endoglycosidase F) led to significant inhibition of the  $\text{Na}^+/\text{HCO}_3^-$  co-


**Fig. 2.** Purified renal cortical basolateral membranes (2.5 mg/ml) were treated with *n*-*n*'-dicyclohexyl carbodiimide (DCCD), right panel, at final concentration of 0.5 mM DCCD, for 30 min at 20°C. The reaction was stopped by centrifugation and elution of the vesicles from Sephadex LH-20 column. Matched control (CTRL) experiments, left panel, were done under the same conditions.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.

transporter activity as compared to the untreated controls (control  $2.11 \pm 0.25$  vs. Endo-F  $0.80 \pm 0.27$ , ( $P < .001$ ). Likewise, incubation of the basolateral membranes with endo-H (endoglycosidase H) Fig. 8, resulted in the inhibition of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity control  $1.97 \pm 0.23$  vs.  $0.65 \pm 0.07$  endo-H ( $P < 0.01$ ). In addition, PNF gase F (recombinant *N*-glycosidase F) also caused a significant reduction in the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity in treated vesicles as compared to controls (Fig. 9). Another agent which acts on the O-linked saccharide groups, O-glycanase was also utilized to study the importance of O-linked glycosylation on the activity of the cotransporter. The results of the experiments indicated that O-glycanase caused a significant reduction in the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter (Fig. 10).


#### Discussion

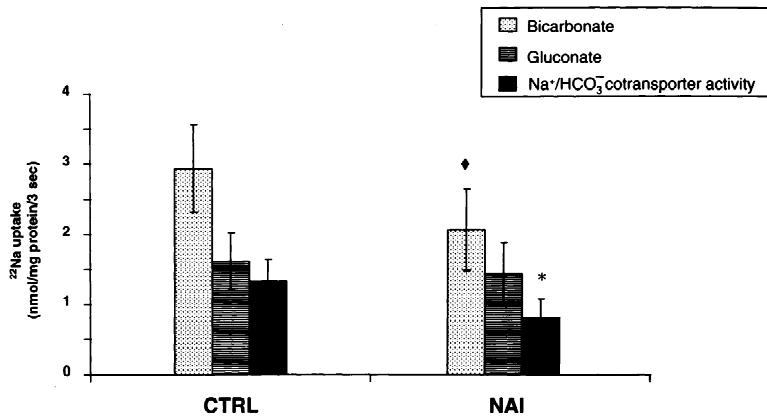
The important role of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein in the regulation of intracellular pH is well established [1, 3]. Likewise, studies have been published lately on the mechanisms of regulation of the cotransporter protein by the signal transduction pathways [5, 23]. However, despite the important role of the cotransporter protein, very limited data are available concerning its protein structure. The use of different chemical modifiers to probe the roles of several components of a protein has helped investigators to understand the chemical structures of a protein that are important in their physiologic functions. In this paper we investigated the roles of the sulphydryl, and carboxyl groups, tyrosine residues, and carbohydrate moieties in the activity of  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein.


Previous studies have suggested that sulphydryl groups are essential for the activity of membrane trans-

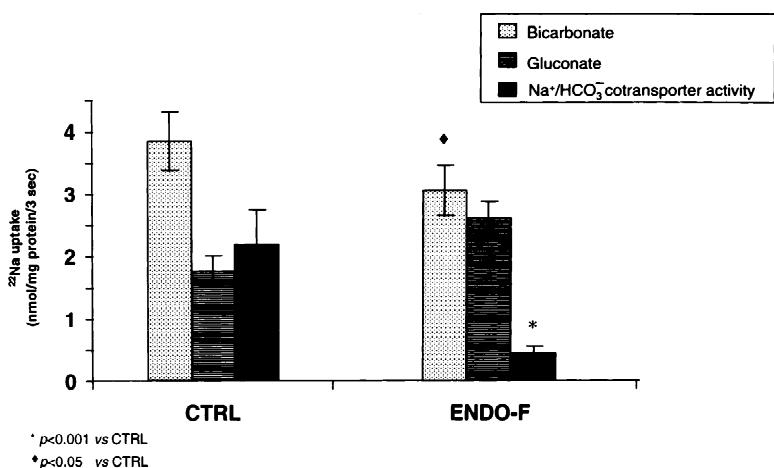


**Fig. 3.** Purified renal cortical basolateral membrane vehicles (2.5 mg/ml) were treated with tetranitromethane (TNM), right panel, at final concentration of 5 mM of TNM for 30 min at 22°C. The control (CTRL) experiments, left panel, were done under the same conditions in the presence of vehicle.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for ten separate experiments on different membrane preparations.




**Fig. 4.** Purified renal cortical basolateral membrane (2.5 mg/ml) incubated with *p*-nitrobenzene sulfonyl fluoride (NBSF), right panel, at final concentration of NBSF to 250  $\mu\text{M}$ . The incubation was done for 30 min at 22°C. The control (CTRL) experiments, left panel, were performed under the same conditions.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.




**Fig. 5.** Purified renal cortical basolateral membrane vesicles (2.5 mg/ml) were treated with *n*-acetylimidazole (NAI), right panel, at final concentration of 75 mM NAI in the absence of 100 mM  $\text{NaHCO}_3$ . The incubation was done for 60 min at 22°C. The control (CTRL) experiments, left panel, were done under the same conditions in the presence of vehicle alone.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.

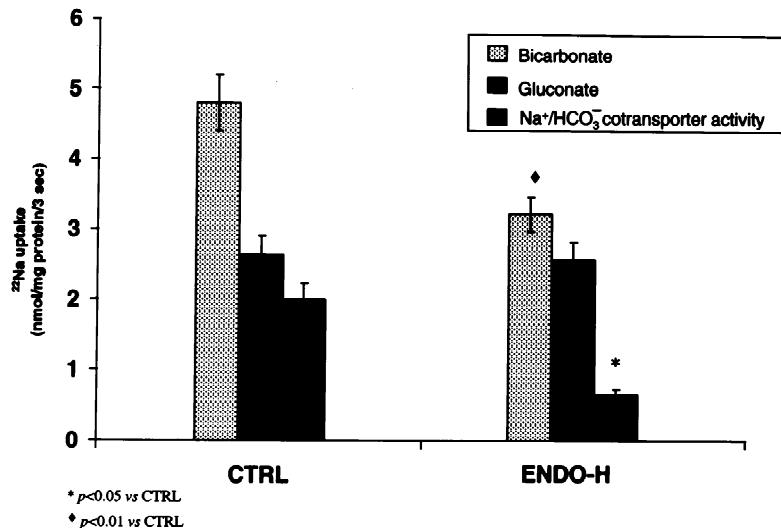
port proteins such as the Na/H exchanger [9, 16]. To study the role of sulfhydryl groups, we utilized DTT on freshly prepared highly purified basolateral membrane vesicles. The sulfhydryl modifying agent caused a significant decrease in the activity of the cotransporter pro-

tein. This suggests that the sulfhydryl groups play an essential role in maintaining the full functional activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. It has been proposed that sulfhydryl groups form bridges resulting in formation of intramolecular mixed disulfides, thus affecting

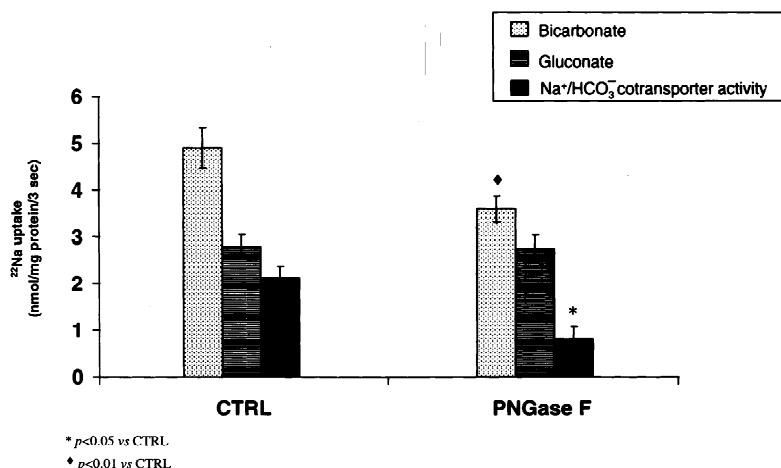


**Fig. 6.** Purified renal cortical basolateral membrane vesicles (2.5 mg/ml) were incubated with *n*-acetylimidazole (NAI), right panel, at final concentration of 75 mM NAI in presence of 100 mM  $\text{NaHCO}_3$  (substrate protection). The incubation was done for 60 min at 22°C. The control (CTRL) experiments, left panel, were performed under the same conditions in the presence of vehicle alone.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.




**Fig. 7.** Purified basolateral membrane vesicles (2.5 mg/ml) were incubated with endoglycosidase F (Endo-F), right panel, at final concentration of 2 units/ml in the presence of protease inhibitors. Incubation was done at 4°C for 18 hr. The controls (CTRL), left panel, were subjected to the same conditions in the presence of vehicles alone. The  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity was measured by rapid filtration technique. The data represent the mean  $\pm$  SE for eight separate experiments on different membrane preparations.

the tertiary structures and functions of proteins. The activity of cardiac K channels is known to be affected by agents that modify sulfhydryl groups [7]. Of interest is the finding that SH group modifiers have also resulted in inhibition of the activity of the Na/H antiporter in placental brush border membranes [9].


To study the role of carboxyl group on the function of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity, we used the carboxyl group specific reagent, DCCD, which has been used previously by other investigators [6, 10, 14] and these studies showed that DCCD inhibited the anion exchanger protein and Na/H antiporter. The effect of another carboxyl reagent *N*-ethoxycarbomyl-2-ethoxyl-1-2-dihydrogrinoline (EEDQ) on the Na- glucose transporter was also investigated [25]. EEDQ decreased the sodium-dependent phlorizin binding of the Na-glucose transporter. This inhibition was prevented by glucose. In addition, inactivation of the red cell anion exchanger by another carbodiimide has been observed [6]. While the above effects on the activities of the different transport proteins were demonstrated to be due to modification of the carboxyl group, another group of investigators

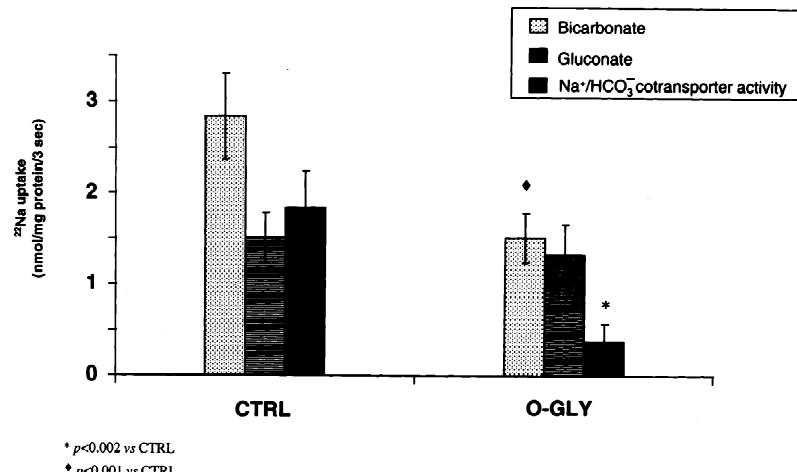
showed that the inactivation of the Na-K-ATPase by EPC (1-, *l*ethyl-3 (3-dimethyl amino propyl 1 carbodiimide) was a consequence of internal cross-linking and not carboxyl group modification [20]. Our studies show that this compound inhibits the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter, but did not elucidate the mechanism of the effect.

To further understand the importance of the different structural components of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein, experiments were carried out utilizing tyrosine residue-specific reagents. These active modifiers, *N*-acetyl imidazole (NAI), tetranitromethane (TNM) and *p*-nitrobenzene sulfonyl fluoride (NBSF) were used. All these tyrosine group modifiers resulted in the inhibition of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity. The tyrosine group modifier tetranitromethane caused the greatest inhibition while the *p*-nitrobenzene sulfonyl fluoride had the least inhibition. The inhibitory effect of NAI was not abolished by the presence of substrate,  $\text{NaHCO}_3$ . This suggests that the tyrosine modifier NAI acts on the residues that may be remote from the binding sites for Na and/or  $\text{HCO}_3^-$ .



**Fig. 8.** Highly purified basolateral membrane vesicles (2.5 mg/ml) were incubated with endoglycosidase H (ENDO-H), right panel, at 2 units/ml final concentration of Endo H in the presence of protease inhibitors. The incubation was done for 18 hr at 4°C. The control (CTRL) experiments, left panel, were done in the presence of vehicles alone under the same conditions.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.




**Fig. 9.** Purified basolateral membrane vesicles (2.5 mg/ml) were treated with *N*-glycosidase F (PNGase F), right panel, at final concentration of 2 units/ml of PNGase F in presence of protease inhibitors. The incubation was done for 18 hr at 4°C. The control (CTRL) experiments, left panel, were performed under the same conditions in the presence of vehicles alone.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for six separate experiments on different membrane preparations.

We studied the role of glycosylation on the functional activities of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter protein. Previous studies have shown an essential role for glycosylation in membrane transport systems such as the  $\text{Na}/\text{H}$  antiporter and the  $\text{Na}^+$  pump [13, 19, 21, 26, 27]. Agents that act on the *N*-glycosidic bonds (*N*-glycosidase F and H and *N*-glycosidase F) inhibited the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. In addition, O-glycanase which acts on O-linked oligosaccharides also resulted in significant decrease in the activity of the cotransporter protein.

From these studies, it can not be determined with certainty the membrane surface location of the amino acid residues in the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter modified by the reagents used. We speculate that the amino acids are located on the extracellular domain of the basolateral membrane because most of the vesicles are oriented right side out. In addition, one could raise the question as to whether other transporters localized to the basolateral membranes (e.g., sodium-dependent decarboxylate trans-

porter, sodium phosphate cotransporter) would also be altered by the reagents used. We believe that the effects of the reagents may not be "specific" for the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter because many other transporters that contain the amino acids or carbohydrate residues being altered by the reagents used have been shown to be affected by the chemical modifiers [9, 10, 12, 14, 16, 21].

Taken together, we have shown that sulphydryl group modifiers (dithiothreitol) as well as carboxyl group modifier (*n*-*n*'-dicyclohexyl carbodiimide) significantly inhibited the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity. Chemical modifiers of the tyrosine residues (*p*-nitrobenzene sulfonyl fluoride, *n*-acetyl imidazole, tetranitromethane) also significantly decreased the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter activity by 50–70%. The effect of tyrosine modifier (NAI) was not prevented by the presence of Na and bicarbonate suggesting that tyrosine residues are not at the binding sites. Finally, treatment of basolateral membrane proteins with the modifiers of the



**Fig. 10.** Purified basolateral membrane vesicles (2.5 mg/ml) were treated with O-glycanase (O-GLY), right panel, at 4 units/ml final concentration of O-GLY in the presence of protease inhibitor. Incubation condition was maintained at 4°C for 18 hr. The control (CTRL) experiments, left panel, were performed under the same conditions in the presence of vehicles.  $^{22}\text{Na}$  uptake was done to measure the activity of the  $\text{Na}^+/\text{HCO}_3^-$  cotransporter. The data represent the mean  $\pm$  SE for seven separate experiments on different membrane preparations.

N and O-glycosidic linked residues (endoglycosidase F and H, N-glycosidase F, O-glycanase) resulted in 50–80% inhibition of cotransporter activity.

The authors thank Elisa Leanos for excellent secretarial assistance in the preparation of this manuscript.

This work was supported by the Merit Review Program for the Veterans Administration Central Office (J.A.L.A.) and the National Kidney Foundation of Illinois and the American Heart Association Metropolitan Chicago (A.A.B.).

## References

1. Akiba, T., Alpern, R.J., Eveloff, J., Calamina, J., Warnock, D.G. 1986. Electrogenic sodium/bicarbonate cotransporter in rabbit renal cortical basolateral membrane vesicles. *J. Clin. Invest.* **78**:1472–1478
2. Akiba, T., Rocco, V.K., Warnock, D.G. 1987. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. *J. Clin. Invest.* **80**:308–315
3. Alpern, R.J. 1990. Cell mechanisms of proximal tubule acidification. *Physiol. Rev.* **70**:79–114
4. Bernardo, A.A., Kear, F.T., Ruiz, O.S., Arruda, J.A.L. 1994. Renal cortical basolateral  $\text{Na}^+/\text{HCO}_3^-$  cotransporter: I Partial purification and reconstitution. *J. Membrane Biol.* **140**:31–37
5. Bernardo, A.A., Kear, F.T., Qui, Y.Y., Ruiz, O.S., Stim, J.A., Weidman, H., Arruda, J.A.L. 1995. Renal cortical basolateral  $\text{Na}^+/\text{HCO}_3^-$  cotransporter III. Evidence for a regulatory protein in the inhibitory effect of protein kinase A. *J. Memb. Biol.* **145**:67–74
6. Bjerrum, P.J., Andersen, O.S., Borders, C.L., Wieth, J.O. 1989. Functional carboxyl groups in red cell anion exchange protein. *J. Gen. Physiol.* **93**:813–839
7. Coetzee, W.A., Nakamura, T.Y., Faivre, J. 1995. Effects of thiol-modifying agents on  $\text{K}_{\text{ATP}}$  channels in quinea pig ventricular cells. *Am. J. Physiol.* **269**:H1625–H1633
8. Dwek, R.A., Edge, C.J., Harvey, P.J., Wormald, M.R., Parekh, R.B. 1993. Analysis of glycoproteins associated with oligosaccharides. *Annals Rev. Biochem.* **62**:65–100
9. Fliegel, L., Haworth, R.S., Dyck, J.R.B. 1993. Characterization of the placental brush border membrane  $\text{Na}^+/\text{H}^+$  exchanger: identification of thiol-dependent transitions in apparent molecular size. *Biochem. J.* **289**:101–107
10. Friedrich, J., Sablotni, J., Burckhardt, G. 1986. Identification of the renal  $\text{Na}^+/\text{H}^+$  exchanger with n-n'-dicyclohexyl carbodiimide (DCCD) and amiloride analogues. *J. Membrane Biol.* **94**:253–266
11. Grassl, S.M., Aronson, P.S. 1986.  $\text{Na}^+/\text{HCO}_3^-$  cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. *J. Biol. Chem.* **261**:8778–8783
12. Grinstein, S., Cohen, S., Rothstein, A. 1985. Chemical modification of the  $\text{Na}^+/\text{H}^+$  exchanger of thymic lymphocytes. Inhibition by n-ethylmaleimide. *Biochim. Biophys. Acta* **812**:213–222
13. Haworth, R.S., Fröhlich, A., Fliegel, L. 1993. Multiple carbohydrate moieties on the  $\text{Na}^+/\text{H}^+$  exchanger. *Biochem. J.* **289**:637–640
14. Igarashi, P., Aronson, P.S. 1987. Covalent modification of the renal  $\text{Na}^+/\text{H}^+$  exchanger by n-n'-dicyclohexyl carbodiimide. *J. Biol. Chem.* **262**:860–868
15. Krag, S. 1985. Mechanism and functional role of glycosylation in membrane protein synthesis. In: *Current Topics in Membrane and Transport*. P. Knauf and J.S. Cook, editors. pp 181–249. Academic Press, Orlando, FL
16. Kulanthievel, P., Simon, B.J., Leibach, F.H., Mahesh, V., Ganapathy, V. 1990. An essential role for vicinal dithiol groups in the catalytic activity of the human placental  $\text{Na}^+/\text{H}^+$  exchanger. *Biochim. Biophys. Acta* **1024**:385–389
17. Lin, J.T., Stroh, A., Kinne, R. 1982. Renal sodium d-glucose cotransport system: Involvement of tyrosine residues in sodium-transporter interaction. *Biochim. Biophys. Acta* **692**:210–217
18. Park, C.S., Fanestil, D. 1980. Covalent modification and inhibition of an epithelial sodium channel by tyrosine-reactive reagents. *Am. J. Physiol.* **239**:F299–F306
19. Pedemonte, C.H. 1995. Inhibition of  $\text{Na}^+$ -pump expression by impairment of protein glycosylation is independent of reduced sodium entry into the cell. *J. Memb. Biol.* **147**:223–231
20. Pedemonte, C.H., Kaplan, J.H. 1986. Carbodiimide inactivation of Na-K-ATPase. *J. Biol. Chem.* **216**:3632–3639
21. Pearce, B.E., Wright, E.M. 1985. Evidence for tyrosyl residues at the  $\text{Na}^+$  site on the intestinal  $\text{Na}^+/\text{glucose}$  transporter. *J. Biol. Chem.* **260**:6026–6031
22. Ruiz, O.S., Arruda, J.A.L., Talor, Z. 1989.  $\text{Na}-\text{HCO}_3$  cotransporter and  $\text{Na}-\text{H}$  antiporter in chronic respiratory acidosis and alkalosis. *Am. J. Physiol.* **256**:F4782–F4788
23. Ruiz, O.S., Arruda, J.A.L. 1992. Regulation of the renal  $\text{Na}-\text{HCO}_3$  cotransporter by cyclic AMP and calcium-dependent protein kinases. *Am. J. Physiol.* **262**:F560–F565

24. Stim, J.A., Bernardo, A.A., Kear, F.T., Qui, Y.Y., Arruda, J.A.L. 1994. Renal cortical basolateral  $\text{Na}^+/\text{HCO}_3^-$  cotransporter: II Detection of conformational changes with fluorescein isothiocyanate labeling. *J. Membrane Biol.* **140**:39–46
25. Turner, R.J. 1986. Inactivation of the renal outer cortical brush border membrane D-glucose transporter by n-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline. *J. Biol. Chem.* **261**:1041–1047
26. Soleimani, M., Singh, G., Bookstein, C., Rao, M. 1996. Inhibition of glycosylation decreases  $\text{Na}^+/\text{H}^+$  exchange activity blocks NHE-3 transport to the membrane and increases NHE-3 MRA expression in LLC-PK1 cells. *J. Lab. Clin. Med.* **127**:565–573
27. Yusufi, A.N.K., Szczepanska-Konkel, M., Dousa, T.P. 1988. Role of N-linked oligosaccharide in the transport activity of the  $\text{Na}^+/\text{H}^+$  antiporter in rat renal brush border membrane. *J. Biol. Chem.* **263**:13683–13691